
Lecture 28 Differentiable Manifolds 10/26/2011

Last Time.

(1) Given a vector bundle E → M we’ve constructed the dual bundle E∗ → M and exterior powers
bundles, ΛnE →M , n = 0, . . . ,rank E. Note that for any manifold M we have TM →M and hence
we also have
• the dual bundle (TM)∗ = T ∗M , which is the cotangent bundle.
• Λn(T ∗M) for 0 ≤ n ≤ dimM .
• Γ(Λn(T ∗M)) = Ωn(M), differential forms.

(2) We’ve constructed the Whitney sum E ⊕ F →M of vector bundlesE →M and F →M .
(3) We’ve also defined categories and considered a few examples of categories: the category Set of sets,

the category Top of topological spaces and continuous maps, the category Man of manifolds and
smooth maps, the category Vec of real finite dimensional vector spaces and linear maps, the category
Veciso of finite dimensional real vector spaces and linear isomorphisms. Note that for an object V of
Veciso, i.e., for a vector space V , we have HomVeciso(V, V ) = GL(V ).

Definition 28.1. A (covariant) functor F : C → D from a category C to a category D is a pair of objects
F0 : C0 → D0 and (compatible) maps F1 : C1 → D1 such that the following holds

(1) For all objects A ∈ C0 we have F1(1A) = 1F0(A).
(2) For all (compatible) morphisms f, g ∈ C1 we have F1(g ◦ f) = F1(g) ◦ F1(f).

Example 28.2. We have the underlying functor U : Man→ Set which assigns to a manifold the underlying
set.

Remark 28.3. A contravariant functor reverses the composition order. So instead of condition (2) in
Definition 28.1 we have for all (compatible) morphisms f, g ∈ C1 that F1(g ◦ f) = F1(f) ◦ F1(g).

Notation. Given a functor F : C → D one usually writes F for both F1 and F0.

Example 28.4. The functor (−)∗ : Vec→ Vec that takes the duals, that is, (V A−→ W ) 7→ (V ∗ A∗←− W ∗) is
a contravariant functor.

Example 28.5. [(−)∗]−1 : Veciso → Veciso with (V A−→W ) 7→ (V ∗
(A∗)−1

−→ W ∗) is a covariant functor.

Example 28.6. The mapping Λn : Vec→ Vec with (A A−→) 7→ (ΛnV ΛnA−→ ΛnW ) is a functor.

Question. What about ⊕ and ⊗? They don’t look like functors since they require pairs of vector spaces as
inputs and pairs of maps.

Definition 28.7. Let C(1), . . . , C(n) be categories. The objects of the product category C(1) × · · · × C(n) are
n-tuples of objects (X1, . . . , Xn) such that each Xi ∈ C(i). Morphisms are n-tuples of morphisms of C(i)’s.

I.e (X1
f1−→ Y1, . . . , Xn

fn−→ Yn) where each Xi
fi−→ Yi is an arrow in C(i).

Example 28.8. ⊕ : Vec× Vec→ V with (V1
A1−→W1, V2

A2−→W2) 7→ (V1 ⊕ V2
A1⊕A2−→ W1 ⊕W2) is a functor.

Example 28.9 (Smooth functor). ⊗ : Vec × Vec → V with (V1
A1−→ W1, V2

A2−→ W2) 7→ (V1 ⊗ V2
A1⊗A2−→

W1 ⊗W2) is a functor.

Definition 28.10. A (covariant) functor F : (Veciso)n → Veciso is C∞ if for any n-tuple of vector spaces
(V1, . . . , Vn) the map F : GL(V1)× · · · ×GL(Vn)︸ ︷︷ ︸

Hom(Veciso)n ((V1,...,Vn),(V1,...,Vn))

→ GL(F (V1, . . . , Vn))︸ ︷︷ ︸
HomVeciso (F (V1,...,Vn),F (V1,...,Vn))

is C∞.

Example 28.11. Examples 28.6, 28.8, and 28.9 above provide C∞ functors if we restrict Vec to Veciso.

Theorem 28.12. If F : (Veciso)n → Veciso is a C∞ functor, then for any n-tuple of vector bundles {Ei →
M}ni=1 there exists a vector bundle F (E1, . . . , En)→ M such that for all q ∈ M we have F (E1, . . . , En)q =
F ((E1)q, . . . , (En)q).
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Sketch of Proof. As a set define F (E1, . . . , En) def=
∐
q∈M F ((E1)q, . . . , (En)q). Let {ϕ(i)

α : E(i)
∣∣
Uα
→ Uα ×

Rki} n
α∈A i=1 be a collection of trivializations with {Uα}α∈A a cover of M . Then

F
(
ϕ(1)
α , . . . , ϕ(n)

α

)
: F (E1, . . . , En)

∣∣
Uα
→ Uα × (Rk1 × · · · × Rkn)

are purported trivializations of F (E1, . . . , En). Then for all q ∈ Uα we have

F
(
ϕ(1)
α , . . . , ϕ(n)

α

) ∣∣
F ((E1)q,...,(En)q)

= F
(
ϕ(1)
α (q), . . . , ϕ(n)(q)

α

)
The corresponding transition maps of F (E1, . . . , En) are

ϕ
F (E1,...,En)
αβ (q) = F

(
ϕ

(1)
αβ(q), . . . , ϕ(n)

αβ (q)
)

which are C∞ since F is a C∞ functor. �

Our next goal, for a week or two are Stokes’ and divergence theorems. Recall the fundamental theorem of
calculus. It states that ∫ b

a

f ′(x) dx = f(b)− f(a)

which we may rewrite as ∫
[a,b]

df =
∫
∂([a,b])

f,

Recall also

Theorem 28.13 (Green’s Theorem). If D ⊆ R2 is a domain with smooth boundary ∂D, then∫
∂D

P (x, y) dx−Q(x, y) dy =
∫
D

(
−∂P
∂y

+
∂Q

∂x

)
dxdy

Note that

dP =
∂P

∂x
dx+

∂P

∂y
dy

dQ =
∂Q

∂x
dx+

∂Q

∂y
dy

Hence, if we set α = P (x, y) dx−Q(x, y) dy, we can rewrite the statement of Green’s theorem as∫
∂D

α =
∫
D

dP ∧ dx+ dQ ∧ dy

If we set dα := dP ∧ dx+ dQ ∧ dy, then the statement of Green’s theorem shortens to∫
∂D

α =
∫
D

dα,

which now looks just like the fundamental theorem of calculus except now instead of a function f we have
a one-form α. The general theorem that subsumes the two theorems above as special cases is:

Theorem 28.14 (Stokes’ Theorem). Let D be a domain in an oriented manifold M with boundary ∂D
(oriented appropriately). Then for all ω ∈ ΩdimM−1

c (M)∫
∂D

ω =
∫
D

dω.

To makes sense of the statement we need to sort out a number of things: “domain,” why the boundary
of a domain is a manifold, “induced orientation of the boundary,” the exterior derivative d applied to all
differential forms and not just to functions ...
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